Combined Science Past Paper Practice

5.2 Structure, Bonding and the Properties of Matter

5.2.2 How Bonding is Related to the Properties of Substances							
Demand	Question	Page Number	Mark Scheme	Demand	Question	Page Number	Mark Scheme
Low	1	2	66	High	14	37	81
	2	4	67		15	39	82
	3	8	68		16	41	84
	4	11	69		17	43	86
	6	17	72		18	45	88
	7	20	73		20	50	90
	8	23	74		21	51	91
	9	26	75		22	53	93
Standard	11	31	77		23	55	94
	12	33	79		24	57	95

5.2.3 Structure and Bonding of Carbon							
Demand	Question	Page Number	Mark Scheme	Demand	Question	Page Number	Mark Scheme
Low	5	14	71	Standard	28	64	99
	25	58	96	High	19	47	89
	26	59	97				
Standard	10	29	76				
	27	62	98				

Q1.

This question is about elements and compounds.
(a) The chart below shows the proportion of elements in the periodic table that are metals and non-metals.

Determine the percentage of the elements in the chart above that are metals.
\qquad
\qquad

$$
\text { Percentage }=\ldots \%
$$

(b) Give two physical properties of metals.

1. \qquad
\qquad
2. \qquad
\qquad
(c) Sodium reacts with chlorine to produce sodium chloride.

Balance the equation for the reaction.
\qquad $\mathrm{Na}+\mathrm{Cl}_{2} \rightarrow$ \qquad NaCl

The diagram below shows part of the structure of sodium chloride (NaCl).

Sodium chloride

(d) What holds the particles together in sodium chloride?

Use the diagram above.
Tick (\checkmark) one box.

Electrostatic attractions

Intermolecular forces

Metallic bonds
(e) Solid sodium chloride does not conduct electricity.

Give two ways in which sodium chloride can be made to conduct electricity.

1. \qquad
\qquad
2. \qquad
\qquad

Q2.

This question is about elements in the periodic table.
(a) What property was used to arrange elements in early periodic tables?

Tick (\checkmark) one box.

(b) In early periodic tables, iodine (I) was placed before tellurium (Te).

Mendeleev placed iodine after tellurium.
Figure 1 shows part of Mendeleev's periodic table.
Figure 1

16	19
\mathbf{O}	\mathbf{F}
32	35.5
\mathbf{S}	$\mathbf{C l}$
79	80
$\mathbf{S e}$	$\mathbf{B r}$
128	127
$\mathbf{T e}$	\mathbf{I}

Suggest one reason why Mendeleev placed iodine in the column shown in Figure 1.
\qquad
\qquad

The table below shows the melting points of three Group 1 metals.

Metal	Melting point in ${ }^{\circ} \mathbf{C}$
Lithium	180
Sodium	98
Potassium	63

(c) What state is lithium at $100^{\circ} \mathrm{C}$?

Use table above.
Tick (\checkmark) one box.

(d) Complete the graph below.

Use the table above.
You should:

- complete the scale on the y-axis
- draw bars to show the melting points of sodium and potassium.

(e) Lithium reacts with chlorine to produce lithium chloride.

Figure 2 shows what happens to the electrons in the outer shells when a lithium atom reacts with a chlorine atom.

The dots (0) and crosses (x) represent electrons.
Figure 2

Describe what happens to a lithium atom and to a chlorine atom when they react.
Use Figure 2 to answer in terms of electrons.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(f) Lithium and potassium are in the same group of the periodic table.

Figure 3 represents the electronic structures of a lithium atom and of a potassium atom.
Figure 3

Lithium atom

Potassium atom

Give two reasons why potassium is more reactive than lithium.
1.
\qquad
2. \qquad
\qquad

Q3.

This question is about oxygen and compounds of oxygen.
(a) What is the state symbol of oxygen at room temperature?
\qquad
(b) Figure 1 shows the percentage by mass of the elements calcium, carbon and oxygen in calcium carbonate.

Figure 1

What is the percentage by mass of calcium in calcium carbonate?

$$
\text { Percentage }=\ldots \text { \% }
$$

(c) At high temperature, sodium nitrate decomposes into sodium nitrite and oxygen.

A student heats three samples of sodium nitrate.
The mass of each sample was 4.50 g
The mass of solid after heating was recorded.
Table 1 shows the mass of solid after heating in each experiment.
Table 1

Experiment	Mass of solid after heating in \mathbf{g}
1	3.76
2	3.98
3	4.09

Calculate the mean mass of solid after heating.

Give your answer to 3 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Mean mass of solid after heating = g
(d) Table 2 shows the electronic structure of hydrogen and oxygen.

Table 2

Element	Electronic structure
Hydrogen	1
Oxygen	2,6

Figure 2 shows part of a dot and cross diagram of a molecule of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$.
Complete the dot and cross diagram.
You should show only the electrons in the outer energy levels.
Figure 2

Oxygen and sulfur are examples of simple molecules.
(e) Complete the sentence.

Choose the answer from the box.

covalent	ionic	metallic

There are \qquad bonds between the atoms of oxygen in an oxygen molecule.
(f) Figure 3 shows the relative sizes of an oxygen molecule and a sulfur molecule.

Figure 3

How does the boiling point of sulfur compare with the boiling point of oxygen?
Complete the sentences.
The boiling point of sulfur is \qquad the boiling point of oxygen.

This is because in sulfur the intermolecular forces are \qquad
than the intermolecular forces in oxygen.

Q4.

This question is about the halogens.
(a) Which group in the periodic table is known as the halogens?

Tick one box.

Group 1

Group 2

Group 7

Group 0 \square
(b) A fluorine atom has 7 electrons in the outer shell.

The diagram below shows part of a dot and cross diagram to represent a molecule of fluorine (F_{2}).

Complete the dot and cross diagram.
You should show only the electrons in the outer shells.

(c) Chlorine reacts with potassium bromide solution.

Complete the word equation.
potassium
chlorine + bromide
(d) What type of reaction happens when chlorine reacts with potassium bromide solution?

Tick one box.

decomposition	\square
displacement	\square
neutralisation	\square
precipitation	\square

(e) Complete the sentence.

Choose the answer from the box.

an atom	an electron	a neutron	a proton

Chlorine is more reactive than bromine.

This is because chlorine gains \qquad more easily.
(f) How does the size of a chlorine atom compare with the size of a bromine atom?

Complete the sentence.
Choose the answer from the box.

bigger than	the same size as	smaller than

A chlorine atom is \qquad a bromine atom.
(g) Give a reason for your answer to part (f)

Reason \qquad
\qquad
(h) Fluorine reacts with chlorine to produce CIF_{3}

Balance the chemical equation for the reaction.

$$
\mathrm{Cl}_{2}+\ldots \mathrm{F}_{2} \rightarrow 2 \mathrm{ClF}_{3}
$$

(i) Explain why fluorine is a gas at room temperature.

Use the following words in your answer:
energy forces molecules weak
\qquad

Q5.

This question is about structure and bonding.
(a) Figure 1 shows part of one layer of graphene.

Figure 1

Which element is graphene made from?
Tick one box.

Carbon

Copper

Hydrogen

Sodium
(b) Each atom in graphene has one delocalised electron.

Complete the sentence.
Choose the answer from the box.

act as a lubricant	be used as a fuel
conduct electricity	dissolve in water

Delocalised electrons allow graphene to \qquad .
(c) Which structure is a fullerene?

Tick one box.

Figure 2 shows part of a large hydrocarbon molecule.

(d) Which two elements are in all hydrocarbons?

1. \qquad
2. \qquad
(e) Complete the sentence.

Choose the answer from the box.

an atom	a metal	a polymer	a salt

The large molecule represented in Figure 2 is \qquad .
(f) Complete the sentence.

Choose the answer from the box.

attract	bond	slide	vibrate

Metals can be stretched into wires
because the layers of atoms can \qquad .

Q6.

This question is about compounds of fluorine.
(a) A fluorine atom has 7 electrons in the outer shell.

Figure 1 shows part of a dot and cross diagram of a molecule of hydrogen fluoride (HF).
Complete the dot and cross diagram in Figure 1.
You should show only the electrons in the outer shells.
Figure 1

Figure 2 shows the boiling point and melting point of oxygen difluoride $\left(\mathrm{OF}_{2}\right)$.
Figure 2

(b) What is the state of oxygen difluoride at $-200^{\circ} \mathrm{C}$?

Tick one box.

Aqueous (aq)
Gas (g)
Liquid (I)

as

Solid (s)

(c) What change of state occurs when oxygen difluoride is cooled from $-220^{\circ} \mathrm{C}$ to $-230^{\circ} \mathrm{C}$? Tick one box.

	\square
Condensing	
Evaporating	\square
Freezing	\square
Melting	

Potassium reacts with fluorine to produce the ionic compound potassium fluoride (KF).
Figure 3 shows the transfer of electrons during the reaction.
Figure 3

(d) Describe what happens when potassium reacts with fluorine to produce potassium fluoride.

Write about electron transfer in your answer.
\qquad
(e) Potassium fluoride is an ionic compound.

Explain why ionic compounds have high melting points.
Use the following words in your answer:

- attraction
- energy
- ions.
\qquad

Q7.

John Newlands arranged the known elements into a table in order of atomic weight.
Figure 1 shows part of Newlands' table.
Figure 1

Group	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
	H	Li	Be	B	C	N	O
	F	Na	Mg	Al	Si	P	S
	Cl	K	Ca				

(a) What are the names of the elements in Group 5 of Newlands' table?

Tick one box.

Calcium and sulfur \square

Carbon and silicon

Chlorine and silver

Chromium and tin

(b) In what order is the modern periodic table arranged?

Tick one box.

Atomic mass \square

Atomic number \square

Atomic size \square

Atomic weight \square
(c) Give two differences between Group 1 of Newlands' table and Group 1 of the periodic table.
\qquad
\qquad
\qquad
\qquad
(d) In 1864, atoms were thought to be particles that could not be divided up into smaller particles.

By 1898, the electron had been discovered and the plum pudding model of an atom was proposed.

Figure 2 shows the plum pudding model of an atom of carbon and the nuclear model of an atom of carbon.

Figure 2

Plum pudding model

Nuclear model

Compare the position of the subatomic particles in the plum pudding model with the nuclear model.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(e) Models are used to show the differences between elements, compounds and mixtures. Which circle shows a model of a mixture?

Tick one box.

(f) Figure 3 shows a model of carbon dioxide.

Figure 3

$$
\mathrm{O}=\mathrm{C}=\mathrm{O}
$$

What does each line between the atoms in Figure 3 represent?
Tick one box.

Q8.
The three states of matter are solid, liquid and gas.
(a) Lithium reacts with water to produce lithium hydroxide solution and hydrogen.

Use the correct state symbols from the box to complete the chemical equation.

$$
\begin{gathered}
\begin{array}{rrr}
\hline \mathrm{aq} & \mathrm{~g} & \mathrm{I} \\
\mathrm{~s}
\end{array} \\
2 \mathrm{Li}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{LiOH}\left(_\right)+\mathrm{H}_{2}\left(_\right) \\
\text {lithium }+ \text { water } \rightarrow \text { lithium hydroxide + hydrogen }
\end{gathered}
$$

(b) Figure 1 shows the melting points and the boiling points of four substances, A, B, C and D.

Figure 1

Which substance is liquid over the greatest temperature range?
Tick one box.
A

B

C

D

(c) Which two substances are gases at $50^{\circ} \mathrm{C}$?

Tick one box.

A and B

B and C

C and D

A and D

(d) A different substance, E, has:

- a melting point of $-50^{\circ} \mathrm{C}$
- a boiling point of $+120^{\circ} \mathrm{C}$

Plot these two values on Figure 1.
(e) Figure 2 shows the apparatus a student used to determine the melting point and the boiling point of substance \mathbf{B} in Figure 1.

Figure 2

Explain why the student could not use this apparatus to determine the boiling point of substance B.
\qquad
\qquad
\qquad
\qquad
(f) Suggest one reason why the student could not use this apparatus to determine the exact melting point of substance B.
\qquad
\qquad

Q9.
The apparatus in the figure below is used to separate a mixture of liquids in a fuel.

(a) What is apparatus \mathbf{W} on above the figure above?

Tick one box.

Beaker

Boiling Tube

Flask

Jug
(b) What is the name of this method of separation?

Tick one box.

Crystallisation \square

Electrolysis \square

Filtration \square

Distillation

(c) Name the changes of state taking place at \mathbf{A} and \mathbf{B} in the figure above.

Use words from the box.

boiling	condensing	freezing	melting

Change of state at \mathbf{A} : \qquad
Change of state at \mathbf{B} : \qquad
(d) Table 1 shows the boiling points of the hydrocarbons in the fuel.

Table 1

Hydrocarbon	Boiling point in ${ }^{\circ} \mathbf{C}$
Pentane	36
Hexane	69
Heptane	98
Octane	125

Which hydrocarbon will be the last to collect in the beaker?
Tick one box.

(e) The fuel is a mixture of liquids that has been designed as a useful product.

What name is given to this type of mixture?
Tick one box.

(f) Describe how this fuel is different from crude oil.
\qquad
\qquad
\qquad
\qquad
(g) A student measured the melting point of a solid hydrocarbon four times.

The student's results are in Table 2.

Table 2

	Trial 1	Trial 2	Trial 3	Trial 4
Melting point in ${ }^{\circ} \mathrm{C}$	35	48	37	37

Calculate the mean melting point of the hydrocarbon, leaving out any anomalous result.
Give your answer to two significant figures.
\qquad
\qquad
Mean melting point $=$ \qquad ${ }^{\circ} \mathrm{C}$

Q10.
This question is about substances with covalent bonding.
(a) The diagram below shows a ball and stick model of a water molecule $\left(\mathrm{H}_{2} \mathrm{O}\right)$.

Suggest one limitation of using a ball and stick model for a water molecule.
\qquad
\qquad
\qquad
(b) Ice has a low melting point.

Water molecules in ice are held together by intermolecular forces.
Complete the sentence.
Ice has a low melting point because the intermolecular forces are
\qquad .
(c) The image below shows the structure of a molecule.

What is the molecular formula of the molecule in the above image?
\qquad
\qquad

Diamond has a giant covalent structure.
(d) What is the number of bonds formed by each carbon atom in diamond?

Tick (\checkmark) one box.
2

3

4

8

(e) Give two physical properties of diamond.

1. \qquad
2. \qquad
(f) Name two other substances with giant covalent structures.
3. \qquad
4. \qquad
(Total 8 marks)

Q11.

This question is about sodium and chlorine.
Figure 1 shows the positions of sodium and chlorine in the periodic table.
Figure 1

(a) State one difference and one similarity in the electronic structure of sodium and of chlorine.

Difference \qquad
\qquad
Similarity \qquad
\qquad
(b) Sodium atoms react with chlorine atoms to produce sodium chloride (NaCl).

Describe what happens when a sodium atom reacts with a chlorine atom.
Write about electron transfer in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The reaction between sodium and chlorine is an exothermic reaction.

Complete the reaction profile for the reaction between sodium and chlorine.
Figure 2

Q12.
Three substances are all solid at room temperature.
The table describes tests and the result of each test on the three substances.

Substance	Effect of large force applied	Effect of heating gently at first, then strongly	Effect of passing electricity through solid	Effect of passing electricity through liquid
A	Breaks into many pieces	Easily melts and then boils	Does not conduct	Does not conduct
B	Breaks into many pieces	No change	Does not conduct	Conducts
C	Becomes thinner	No change	Conducts	Conducts

(a) The covalent bonds in the molecules are not overcome when substance \mathbf{A} is heated.

What forces are overcome when substance A melts?
\qquad
(b) What could substance \mathbf{A} be?

Tick one box.

Graphite

Iron

Sodium chloride

Sulfur

(c) Suggest why substance \mathbf{B} conducts electricity as a liquid but does not conduct electricity as a solid.
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Suggest why substance \mathbf{C} becomes thinner when a large force is applied.
\qquad
\qquad
\qquad
\qquad
(e) What could substance \mathbf{C} be?

Tick one box.

Copper

Diamond

Iodine

Magnesium oxide

Q13.
This question is about calcium.
(a) What type of compound is calcium oxide?

Tick one box.

(b) lonic compounds, such as calcium oxide, have high melting points.

Complete the sentences. Use words from the box.

bonds	forces	ions

Calcium oxide has a giant ionic lattice in which there are strong electrostatic
\qquad of attraction in all directions.
(c) The figure below shows the electronic structure of an oxygen atom and a calcium atom.

Oxygen atom

Calcium atom

Describe how the calcium atom and the oxygen atom forms calcium oxide.
You should give the charge on each ion formed.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q14.

This question is about elements.
Caesium is in Group 1 of the periodic table.
(a) Explain what happens to caesium atoms and to oxygen atoms when caesium reacts with oxygen to produce caesium oxide.

You should answer in terms of electrons.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Explain why caesium is more reactive than sodium.

You should answer in terms of electrons.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The diagram below shows part of Mendeleev's periodic table.

16	19
\mathbf{O}	\mathbf{F}
32	35.5
\mathbf{S}	$\mathbf{C l}$
79	80
$\mathbf{S e}$	$\mathbf{B r}$
128	127
$\mathbf{T e}$	$\mathbf{1}$

Explain why the early periodic tables placed iodine (I) before tellurium (Te), but then Mendeleev placed tellurium before iodine.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q15.

This question is about oxygen.
(a) Hydrogen reacts with oxygen.

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Figure 1 shows the relative energies of the reactants and products at a certain temperature.

Label the activation energy on Figure 1.
(b) Determine the overall energy change for the reaction between hydrogen and oxygen shown in part (a).

Use Figure 1.
\qquad
\qquad
\qquad
\qquad
Energy change = \qquad kJ
(c) Oxygen is in Group 6 of the periodic table.

Figure 2 shows the outer energy levels in one molecule of oxygen $\left(\mathrm{O}_{2}\right)$.
Draw the electrons in the outer energy levels in Figure 2.
Figure 2

(d) The equation shows the decomposition of hydrogen peroxide.

$$
2 \mathrm{H}-\mathrm{O}-\mathrm{O}-\mathrm{H} \rightarrow 2 \mathrm{H}-\mathrm{O}-\mathrm{H}+\mathrm{O}=\mathrm{O}
$$

The table shows the bond energies.

Bond	O-O	O=O	O-H
Bond dissociation energy in kJ per mole	138	496	463

Calculate the overall energy change for the reaction.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Energy change = \qquad kJ

Q16.

This question is about elements in the periodic table.
(a) What order did scientists use to arrange elements in early periodic tables?
\qquad
\qquad
(b) In the early periodic tables some elements were placed in the wrong groups.

Mendeleev overcame this in his periodic table.
Give one way Mendeleev did this.
\qquad
\qquad

The table shows the boiling points of fluorine, chlorine and bromine.

Element	Boiling point in ${ }^{\circ} \mathbf{C}$
Fluorine	-186
Chlorine	-34
Bromine	+59

(c) Explain why the boiling points in the table are low.
\qquad
\qquad
\qquad
\qquad
(d) Explain the trend in the boiling points in the table above.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(e) Explain why neon is unreactive.

Give the electronic structure of neon in your answer.
\qquad
\qquad
\qquad
\qquad
(f) How many atoms are there in 1 g of argon?

The Avogadro constant is 6.02×10^{23} per mole.
Relative atomic mass (A_{r}): $\mathrm{Ar}=40$
\qquad
\qquad
\qquad
\qquad
Number of atoms in $1 \mathrm{~g}=$ \qquad

Q17.

This question is about sodium.
(a) Sodium reacts with chlorine.

What is the balanced equation for the reaction?
Tick (\checkmark) one box.
$\mathrm{Na}+\mathrm{Cl} \rightarrow \mathrm{NaCl}$

$\mathrm{Na}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}_{2}$

$2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$

$2 \mathrm{Na}+\mathrm{Cl} \rightarrow \mathrm{Na}_{2} \mathrm{Cl}$ \square
(b) Hot sodium is put in a gas jar of chlorine.

Describe the observations made before, during and after the reaction.

Before reaction \qquad
\qquad
During reaction \qquad
\qquad
After reaction \qquad
\qquad
(c) Explain why sodium is less reactive than potassium.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Chlorine reacts with sodium and with hydrogen.

Compare the structure and bonding in sodium chloride and hydrogen chloride.
\qquad

Q18.
This question is about the halogens.
(a) Write the state symbol for chlorine at room temperature.
$\mathrm{Cl}_{2}($ \qquad)
(b) The diagram below represents one molecule of fluorine.

Complete the dot and cross diagram on the diagram above.
You should show only the electrons in the outer shells.

(c) A fluorine atom can be represented as

What is the total number of electrons in a fluorine molecule $\left(\mathrm{F}_{2}\right)$?
Tick one box.
9 \square
14 \square
18

38

(d) Aluminium reacts with bromine to produce aluminium bromide.

Complete the balanced chemical equation for this reaction.
\qquad Al + \qquad $\mathrm{Br}_{2} \rightarrow 2$ \qquad
(e) When chlorine reacts with potassium bromide, chlorine displaces bromine.

$$
\mathrm{Cl}_{2}+2 \mathrm{KBr} \rightarrow \mathrm{Br}_{2}+2 \mathrm{KCl}
$$

Explain why chlorine is more reactive than bromine.
\qquad
(3)
(Total 9 marks)

Q19.
This question is about structure and bonding.
(a) Figure 1 shows part of the structure and bonding in diamond.

Figure 1

Explain why diamond has a high melting point.
\qquad
(b) Figure 2 shows part of the structure and bonding in sodium chloride (NaCl).

Figure 2

Explain the conditions needed for sodium chloride to conduct electricity.
\qquad
(c) Figure 3 shows the structure of sodium.

Figure 3

Describe how sodium conducts thermal energy.
\qquad
(3)
(Total 9 marks)

Q20.

Fertilisers are formulations.
(a) What is a formulation?
\qquad
\qquad
(b) A bag of fertiliser contains 14.52 kg of ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$.

Relative formula mass (M_{r}): $\mathrm{NH}_{4} \mathrm{NO}_{3}=80$
Calculate the number of moles of ammonium nitrate in the bag of fertiliser.
Give your answer in standard form to 2 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Moles of ammonium nitrate $=$ \qquad mol
(c) The fertiliser also contains potassium chloride.

Explain why potassium chloride has a high melting point.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q21.

This question is about fluorine.
(a) Calcium reacts with fluorine to produce calcium fluoride $\left(\mathrm{CaF}_{2}\right)$.

Explain how oxidation and reduction have taken place in this reaction.
Write about electron transfer in your answer.
\qquad
(b) Explain why calcium fluoride has a high melting point.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Fluorine reacts with sulfur to produce sulfur hexafluoride $\left(\mathrm{SF}_{6}\right)$.

$$
\mathrm{S}+3 \mathrm{~F}_{2} \rightarrow \mathrm{SF}_{6}
$$

Relative formula masses, M_{r} : $\mathrm{F}_{2}=38 \quad \mathrm{SF}_{6}=146$

Calculate the mass of sulfur hexafluoride produced when 0.950 g of fluorine is reacted with an excess of sulfur.

Give your answer to 3 significant figures.
\qquad
Mass $=\ldots g$
(Total 13 marks)

Q22.

This question is about oxygen.
(a) One oxygen atom shares one pair of electrons with each fluorine atom in oxygen difluoride (OF_{2}).

Complete the dot and cross diagram of oxygen difluoride below.
You should show only the electrons in the outer shells.

(b) Oxygen difluoride $\left(\mathrm{OF}_{2}\right)$ has a melting point of $-224^{\circ} \mathrm{C}$ and a boiling point of $-145^{\circ} \mathrm{C}$ What is the state of oxygen difluoride at room temperature?

Explain your answer in terms of structure and bonding.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The equation shows the reaction of methane with oxygen.

The table shows the bond energies.

Bond	C-H	O=O	C=O	O-H
Bond energy in kJ per mole	412	496	803	463

Calculate the overall energy change for the combustion of one mole of methane.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Energy change = \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$

Q23.

This question is about ammonia $\left(\mathrm{NH}_{3}\right)$.
(a) Complete the diagram to show the bonding electrons in ammonia.

Show the outer electrons only.

Ammonia is produced from nitrogen and hydrogen.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

The forward reaction is exothermic.
(b) A low pressure is used.

Explain the effect on the yield of ammonia.
\qquad
\qquad
\qquad
\qquad
(c) A high temperature is used.

Explain the effect on the yield of ammonia.
\qquad
\qquad
\qquad
\qquad
(d) Ammonia is removed from the reaction mixture.

Explain the effect on the position of equilibrium.
\qquad
\qquad

Q24.

Hydrogen chloride (HCl) is a gas.
(a) Complete the diagram to show all of the arrangement of the outer shell electrons of the hydrogen and chlorine atoms in hydrogen chloride.

(b) Hydrochloric acid is a strong acid.

Ethanoic acid is a weak acid.
Describe a reaction that could be used to show the difference between a weak acid and a strong acid.

You should explain why the weak acid and the strong acid give different results.
\qquad

Q25.

The picture shows a student filling in a multiple choice answer sheet using a pencil.

The pencil contains graphite. Graphite rubs off the pencil onto the paper.
Diagrams 1 and 2 show how the atoms are arranged in graphite.

(a) Use the diagrams to help you explain why graphite can rub off the pencil onto the paper.
\qquad
\qquad
\qquad
\qquad
(b) Draw a ring around the type of bond which holds the atoms together in each layer.
covalent ionic metallic

Q26.

There are several different forms of carbon and many different carbon compounds.
(a) Figure 1 shows a 3D model of a molecule of methane $\left(\mathrm{CH}_{4}\right)$.

Figure 1

Draw the 2D structure of a methane molecule.
(b) Different forms of carbon have different bonding and structure.

Draw one line from the form of carbon to the bonding and structure.

Form of carbon

Bonding and structure

Each carbon atom is bonded to three other carbon atoms in a single layer

Each carbon atom is bonded to four other carbon atoms

Layers of carbon atoms with no covalent bonds between the layers

Carbon ions held together by strong electrostatic forces

Pairs of carbon atoms with no covalent bonds between the molecules
(c) Crude oil is a mixture of many different carbon compounds.

Crude oil can be separated into useful fractions by fractional distillation.

Figure 2 shows a column used to separate crude oil.
Figure 2

Complete the sentences.
Use words from the box.
condense evaporate freeze

Crude oil is heated so that most of the compounds \qquad
At different temperatures the compounds cool and \qquad
(d) Which fraction is the most viscous?

Tick one box.
Engine oil $\quad \square$
Diesel oil $\quad \square$

Kerosene

Petrol

(e) Which fraction is the most flammable?

Tick one box.

Diesel oil

Kerosene

Petrol

Refinery gas

(f) Why does kerosene separate out of the mixture before diesel oil?

Q27.
This question is about graphene and graphite.
Graphene is a single layer of graphite.
Figure 1 represents part of the structure of graphene.
Figure 1

(a) Graphene is one atom thick. The diameter of the atom is $3.4 \times 10^{-10} \mathrm{~m}$ What is the thickness of a graphene layer in nanometres?
$1 \mathrm{~nm}=10^{-9} \mathrm{~m}$
Tick (\checkmark) one box.
0.034 nm \square
0.34 nm \square
3.4 nm \square
34 nm \square
(b) Which is one use of graphene?

Tick (\checkmark) one box.

As a detergent \square

As a solvent \square

In composites \square

To produce polymers \square
(c) Graphene and graphite are used in electronics.

Suggest one reason why graphene is a more suitable material for use in electronics than graphite.
\qquad
\qquad
(d) Figure 2 represents part of the structure of graphite.

Figure 2

Graphite is used as a contact in electric motors because graphite:

- conducts electricity
- is slippery

Explain why graphite has these properties.
You should refer to the structure and bonding of graphite in your answer.
\qquad

Q28.

This question is about diamond and graphite.
Figure 1 shows part of the structure of diamond.
Figure 1

(a) Complete the sentence.

Choose the answer from the box.

calcium	carbon	chromium	cobalt

Diamond is a form of \qquad .
(b) Which two statements about diamond are correct?

Tick two boxes.

Diamond has a giant structure.
Diamond has ionic bonds.

Diamond is made of layers.

Diamond has weak bonds.

Each atom is joined to four other atoms.

Figure 2 shows part of the structure of graphite.
Figure 2

(c) Explain why graphite is soft and slippery.

Use Figure 2 and your own knowledge.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Graphite has covalent bonds between the atoms.

How many covalent bonds does each atom form?
Tick one box.
1

2

3

4

(e) Explain why graphite can conduct electricity.

You should include a reference to electrons in your answer.
\qquad
\qquad
\qquad
\qquad

Q1.
(a) $\frac{8}{10} \times 100$ or 0.8×100
$=80(\%)$
if no other mark awarded allow 1 mark for 20 (\%)
(b) any two from:

- conducts electricity
- conducts thermal energy
allow conducts heat
- ductile
- high melting point
allow high boiling point
- malleable
allow can be bent / shaped
- shiny
- strong
allow dense
allow sonorous
ignore chemical properties
(c) $2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$
allow multiples
(d) electrostatic attractions
(e) (heat sodium chloride until) molten / liquid
dissolve in water
allow form aqueous solution
allow add water

Q2.

(a) atomic weight
(b) (because) properties were similar or
(because) iodine has similar / same properties as bromine / chlorine / fluorine allow symbols
(c) solid
(d) scale on the y-axis up to 180 ignore scale beyond 180
bar for sodium at $98\left({ }^{\circ} \mathrm{C}\right)$
allow a tolerance of \pm half a small square
bar for potassium at $63\left({ }^{\circ} \mathrm{C}\right)$
allow a tolerance of \pm half a small square
max 2 marks if reference to incorrect particle / bonding
(e) lithium (atom) loses one electron
chlorine (atom) gains one electron
any one from:

- ions are formed allow ionic bonding
- lithium forms positive ion
- chlorine forms negative ion
- form a full outer shell(s) / level(s)
allow noble gas structure is formed
allow energy levels for shells
allow converse for lithium
(f) any two from:
- reactivity of elements increases going down the group
- potassium has more shells
- potassium can lose an (outer) electron more easily
- potassium has an outer shell / electron further away from the nucleus
- potassium has more shielding (of the outer shell / electron)
- potassium has a weaker attraction between nucleus and outer shell / electron

Q3.

(a) (g)
allow g
ignore formulae
(b) $40(\%)$
(c)
$\frac{3.76+3.98+4.09}{3}$ or $\frac{11.83}{3}$
an answer of $3.94(g)$ scores 3 marks
$=3.943(333333333333333333)$
$=3.94(\mathrm{~g})$
allow a correctly written answer to 3 significant figures from an incorrectly calculated mean
(d) one shared pair in each overlap
allow combination of circles, dots, crosses or $e^{(-)}$
do not accept extra electron(s) on outer shell of hydrogen

4 non-bonding electrons in outer shell of oxygen
ignore any inner shell electrons

diagram scores 2 marks
(e) covalent
(f) higher (than)
stronger
(than between oxygen molecules)

Q4.

(a) group 7
(b)

one shared pair anywhere in overlap between two circles or on intersection
6 other electrons on each atom
allow dots or crosses or mixture for all marks
ignore any inner shell electrons
(c) bromine
potassium chloride
either order
allow correct chemical formulae
(d) displacement
(e) (an) electron
(f) smaller than
(g) (chlorine has) fewer levels / shells (of electrons)
allow converse for bromine
allow (chlorine has) fewer electrons
allow Cl has 3 levels / shells and Br has 4 levels /
shells
ignore atomic number
or mass number
or number of protons
mark independent of answer to part (f)
(h) 3
allow multiples
(i) there are weak forces
do not accept weak bonds
between molecules
allow weak intermolecular forces for the first $\mathbf{2}$ marks
which require little energy to overcome / break
allow does not need much energy to boil

Q5.

(a) carbon
(b) conduct electricity
(e) a polymer
(f) slide

Q6.

(a)

1 mark for one shared pair of electrons
1 mark for six unbonded electrons on F
(b) liquid (I)
(c) freezing
(d) K loses
one electron
(to) form a positive ion

F gains one electron
(to) form a negative ion
(e) lattice / giant structure
allow many ions
strong attraction
between K^{+}and F^{-}ions / oppositely charged ions
(so) a lot of energy is needed to overcome / break allow strong bonds

Q7.

(a) Carbon and silicon
(b) Atomic number
(c) Hydrogen / fluorine / chlorine are not in Group 1 of the periodic table or Hydrogen and fluorine / chlorine are not in the same group of the periodic table Lithium / sodium / potassium are in Group 1 of the periodic table
(d) plum pudding model has a single ball of positive charge and nuclear model has positive charges in the centre / nucleus
plum pudding model has electrons in random positions and nuclear model has electrons in fixed positions
plum pudding model has no nucleus and the nuclear model has a nucleus
plum pudding model has no neutrons and the nuclear model has neutrons in the nucleus
(e)

(f) Covalent bond

Q8.

(a) $\mathrm{LiOH}(a q)$ this order
$\mathrm{H}_{2}(\mathrm{~g})$
(b) C
(c) A and D
(d) point x at $-10^{\circ} \mathrm{C}$
point • at $+150^{\circ} \mathrm{C}$
(e) substance \mathbf{B} will not reach its boiling point of $190^{\circ} \mathrm{C}$
because the boiling point of water is only $100^{\circ} \mathrm{C}$
(f) there is too much substance \mathbf{B} to melt instantly.
allow answers based on thermal conductivity or temperature gradient from the wall of the test tube to the thermometer

Q9.
(a) Flask
(b) Fractional distillation
(c) \mathbf{A} - boiling in this order

B - condensing
(d) Octane
(e) Formulation
(f) the fuel is a pure compound
and crude oil is a mixture
or
the fuel is made up of four hydrocarbons
allow crude oil contains a large number of compounds and the fuel contains four
and crude oil could have many more
(g) $\quad(35+37+37 / 3)=36.33$

36
allow (35 + 48+37+37/4=)39(.25) for 1 mark

Q10.
(a) any one from:

- not to scale
allow size of atoms incorrect
- not 3 dimensional / D
- incorrect arrangement in space allow atoms are separated
- electrons / shells not shown
ignore properties of water
(b) weak
allow weaker
(c) $\mathrm{CH}_{4} \mathrm{O}$
allow $\mathrm{CH}_{3} \mathrm{OH}$
(d) 4
(e) any two from:
- (very) hard
allow strong
- (very) high melting point
- does not conduct electricity
allow high thermal conductivity
ignore shiny
(f) graphite
allow graphene
silicon dioxide
allow silica
allow silicon
allow polymer(s)
or allow (named) polymer(s)
allow fullerene
or allow carbon nanotubes
ignore buckminsterfullerene

Q11.

(a) (difference) sodium has one and chlorine has seven electrons in outer level / shell or number of electrons number of electrons must be correct if quoted
(similarity)
both have three / same number of levels / shells
or
have electrons in third level / shell
or
both have incomplete (outer) levels / shells
allow both have 2 electrons in inner shell
or
both have 8 electrons in second shell
or
both are one electron away from full outer level / shell
(b) sodium (atom) loses
allow moves / transfers for loses
do not accept sodium ion loses
one (outer shell electron)
chlorine (atom) gains
do not accept chloride
one (electron)
transfer of 1 electron from chlorine to sodium max 2 marks
reference to sharing or covalent bonding max 3 marks allow marks from suitable diagram(s)
(c)

Progress of reaction
ignore labels
any curve / line going up and then down products line below reactants
allow curve to start / finish anywhere along reactant / product lines

Q12.
(a) intermolecular
(b) sulfur
(c) ions
fixed in solid
mobile in liquid
(d) layers of atoms
allow ions
slide over each other
(e) copper

Q13.
(a) A base
(b) forces
(c) calcium loses electrons and oxygen gains electrons max 3 for incorrect reference to atom / ion or to oxygen / oxide
two electrons are transferred
calcium has a 2^{+}charge
oxide has a 2^{-}charge

Q14.
(a) caesium atom loses one electron
(and) oxygen atom gains two electrons
(so) two caesium atoms react with one oxygen atom
allow (to produce) $\mathrm{Cs}_{2} \mathrm{O}$
max 3 marks if reference to incorrect particles /
bonding / structure
any one from:

- (to form) Cs^{+}and O^{2-}
- (to form) caesium ion(s) and oxide ion(s)
- (to form) ions with full outer shells / levels
(b) (caesium has) more energy levels
or
(caesium has) more shells
allow converse for sodium
(so the) outer electron / shell is further from nucleus
or
outer electron / shell is more shielded
(so) weaker attraction between nucleus and outer electron / shell
(so) outer electron is more easily lost
allow (so) less energy needed to remove outer electron
(c) early periodic tables were arranged with elements in order of their atomic weights ignore atomic mass
iodine has a lower atomic weight than tellurium
allow converse for tellurium
(so) Mendeleev placed iodine with elements with same / similar properties
allow $\mathrm{F} / \mathrm{Cl} / \mathrm{Br}$ for elements
or
(so) Mendeleev placed tellurium with elements with same / similar properties allow O / S / Se for elements

Q15.

(a) line from reactants to top of curve (i.e. from 800 to 2160)

ignore arrowheads
(b) reads levels of reactants $(800 \mathrm{~kJ})$ and products $(300 \mathrm{~kJ})$
$(800-300)=500(\mathrm{~kJ})$
allow correct subtraction of one incorrect value determined for the energy change
an answer of (-) 500 (kJ) scores 2 marks ignore sign
(c)
allow combination of circles, dots, crosses or $e^{(-)}$
two shared pairs in overlap
all non-bonding electrons in outer shell (4 electrons on each O atom)
ignore any inner shell electrons

diagram scores 2 marks
(d) (bonds broken)
$((4 \times 463)+(2 \times 138)=) \quad 2128$
(bonds made)
$((4 \times 463)+(496)=) \quad 2348$
(energy change =
bonds broken - bonds made)
(2128-2348 =) (-) 220 (kJ)
ignore energy change sign
allow correct calculation using incorrect values from step 1 and/or step 2

alternative approach:

(bonds broken)
$(2 \times(\mathrm{O}-\mathrm{O})=(2 \times 138)=) 276(1)$
(bonds made)
($1 \times(\mathrm{O}=\mathrm{O})=$) 496(1)
(energy change $=$
bonds broken - bonds made)
(276-496 =) (-) 220 (kJ) (1)
an answer of (-) $220(\mathrm{~kJ})$ scores 3 marks
an incorrect answer for one step does not prevent allocation of marks for subsequent steps

Q16.

(a) atomic weight
do not accept atomic mass or A_{r}
(b) left gaps / spaces
or
changed the order based on atomic weights
allow placed them in correct groups according to properties
do not accept reference to atomic number
(c) weak forces between the molecules
or
weak intermolecular forces
allow weak intermolecular bonds
do not accept incorrect references to covalent bonds
(so) little energy required to overcome / break the forces between molecules or
(so) little energy required to overcome / break the intermolecular forces
allow (so) little energy required to separate the molecules
allow (so) little energy required to overcome / break the intermolecular bonds
ignore less energy
(d)
allow converse explanation in terms of boiling point
(the) molecules get larger going down the group
(so the) forces between the molecules increase
or
(so the) intermolecular forces increase
(so the) boiling points increase going down the group
or
(so the) boiling points increase with increasing relative atomic mass
allow (so) more energy is needed to separate the molecules
(e) 2,8
allow diagram or description
(so) stable arrangement of electrons
or
(so) full outer shell
(f)

an answer of 1.51×10^{22} scores 2 marks

$\frac{1}{40} \times 6.02 \times 10^{23}$
or
$0.025 \times 6.02 \times 10^{23}$
1.51×10^{22}
allow 1.505×10^{22}

Q17.

(a) $2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$
(b) (before)
silver solid / liquid / metal allow grey solid / metal
or
green (gas) allow yellow (gas)
(during)
yellow flame
allow orange / white flame
or
white smoke
or
green colour fades / disappears
allow vigorous reaction
(after)
white solid / powder
(c)

> allow converse for potassium
(sodium has) fewer energy levels / shells allow diagrams of electron structure
outer electron / shell is closer to nucleus
or
outer electron / shell is less shielded
(so) greater attraction between nucleus and outer electron / shell
(so) outer electron is less easily lost
allow (so) loses an I one electron less easily
allow (so) more energy needed to remove an / one electron
(d) Level 2: Scientifically relevant features are identified; the way(s) in which they are similar/different is made clear and (where appropriate) the magnitude of the similarity/difference is noted.
Level 1: Relevant features are identified and differences noted.

No relevant content

Indicative content

	sodium chloride	hydrogen chloride
differences in bonding	ionic	covalent
	metal \& non-metal	two non-metals
	transferring electrons	sharing electrons
	ions (Na^{+}and Cl^{-})	molecules
	charged particles	neutral or no overall charge
differences in structure	giant structure or lattice	small / simple / discrete molecules
	electrostatic	intermolecular forces
	(electrostatic forces) are strong	(intermolecular forces) are weak
	act in all directions	random or between the molecules
	regular	irregular / random
similarities in bonding	full shells or stability	full shells or stability
	(transferring) electrons	(sharing) electrons
	strong bonds	strong (covalent) bonds
	act in all directions	random or between the molecules
similarities in structure	(electrostatic) forces	(intermolecular) forces

ignore properties eg melting points, conduct electricity
to access level 2 there must be a comparison of the structure and bonding and magnitude of both sodium chloride and hydrogen chloride.

Q18.
(a) g
do not accept upper case (G)
do not accept gas
(b)

one shared pair anywhere in overlap between two circles or on intersection

6 other electrons on each atom
allow dots or crosses or mixture for all marks ignore any inner shell electrons
(c) 18
(d) AlBr_{3}
$2 \mathrm{Al}+3 \mathrm{Br}_{2}\left(\rightarrow 2 \mathrm{AlBr}_{2}\right)$
allow 1 mark for balancing their equation with an incorrect product
(e) chlorine is a smaller atom
or has fewer energy levels
or outer shell closer to nucleus
ignore chlorine has fewer electrons
chlorine has less shielding
or
has the greater attraction between the nucleus and the outer shell or incoming electron
therefore chlorine can gain an electron (into the outer shell) more easily
if no other marks awarded allow 1 mark for correct trend in reactivity in Group 7
do not accept reference to incorrect particles e.g. chloride atom
max 2 if outer shell / level not mentioned 'it' refers to chlorine allow converse reasons for bromine being less reactive

Q19.
(a) covalent bonds
giant structure / macromolecule
allow each C has 4 bonds
allow giant covalent structure for 2 marks
allow giant ionic / lattice structure for 1 mark ignore lattice
lots of energy needed to break / overcome
allow disrupt structure
ignore heat and high temperature
if no other marks awarded allow 1 mark for strong /
many bonds
(b) dissolved (in water) or aqueous
allow in solution
molten / liquid
so ions are mobile or free moving
max 2 for incorrect reference to particles or bonds
(c) delocalised electrons (from outer shell)
(free to) move
energy transferred (through structure)
ignore conducts thermal energy ignore electricity
if no other mark awarded allow 1 mark for ions / atoms vibrate

Q20.
(a) a mixture designed as a useful product
(b) mass $=14520 \mathrm{~g}$
$\Leftrightarrow=\frac{14520}{80(\mathrm{~mol})}$
allow correct substitution of incorrectly converted mass must use Mr given (80) to gain marks in steps 2 and 3
(=) 181.5 (mol)
(=) $1.8 \times 10^{2}(\mathrm{~mol})$
allow answer correctly given in standard form to correct sig figs from an incorrect calculation
an answer of $1.8 \times 10^{2}(\mathrm{~mol})$ gains 4 marks
(c) (giant) lattice
allow giant structure
ionic
strong bonds or strong electrostatic forces do not accept strong intermolecular forces / bonds
large amounts of energy needed to overcome ignore heat
max 2 marks for incorrect reference to bonding or structure or particles
(a)

Level 2: Relevant points (reasons/causes) are identified, given in detail and logically linked to form a clear account.	$3-4$
Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.	$1-2$
No relevant content	0
Indicative content Ca / calcium (atom) loses two electrons / both outer electrons and is oxidised to Ca	
F / fluorine (atom) gain one / an electron and is reduced to F- ion	
supporting points	
- fluorine / F (atoms) gain electron(s)	
- negative ion produced	
- calcium (atoms) lose electron(s)	
- positive ion produced	
- reduction is gain of electrons	
- oxidation is loss of electrons	

(b) (because there are) strong electrostatic forces of attraction or ionic bonding
between Ca^{2+} and F^{-}ions / oppositely charged ions
(in a) giant structure / lattice
so a lot of energy is needed to overcome / break this attraction
(c) amount of $\mathrm{F}_{2}=\frac{0.95}{38}=0.025$ moles
mark is for $\div 38$
amount of $\mathrm{SF}_{6}=\frac{1}{3} \times 0.25=0.008333$ moles
mark is for $\times 1 / 3$
mass of $\mathrm{SF}_{6}=0.008333 \times 146$
mark is for $\times 146$
mass $=1.2166666$
mass $=1.22(\mathrm{~g}) 3$ sig figs

Q22.
(a)

two shared pair of electrons
all outer shells complete
(b) gas
small molecules
(with) intermolecular forces
(so require) little energy to overcome
(c) calculates sum of all bonds broken:
$4 \times(\mathrm{C}-\mathrm{H})+2 \times(\mathrm{O}=\mathrm{O})=(4 \times 412)+(2 \times 496)=2640$
calculates sum of all bonds made:
$4 \times(\mathrm{O}-\mathrm{H})+2(\mathrm{C}=\mathrm{O})=(4 \times 463)+(2 \times 803)=3458$

Q23.
(a) $3 \times$ bonding pairs of electrons
$2 \times$ unbonded electrons on nitrogen

(b) decreases yield
more moles on left hand side
(c) decreases yield
exothermic reaction
(d) moves to right hand side
or
more ammonia produced
to replace the ammonia

Q24.

(a) bonded pair of electrons and

6 non-bonded electrons on chlorine
(b) Level 3 (5-6 marks):

A detailed and coherent explanation of comparative results of a reaction in terms of concentration and ionisation. The response makes logical links between the points raised and uses sufficient examples to support these links.

Level 2 (3-4 marks):

A description of a reaction with results is given but may miss some details. Links are made but may not be fully articulated and / or precise.

Level 1 (1-2 marks):

Simple statements are made. The response may fail to make logical links between the points raised.

0 marks:

No relevant content
Indicative content
Simple statements / descriptions of a reaction

- correct comparative pH , such as, 0-3 (strong) 4-6 (weak)
- named reaction, such as, with a reactive metal or a named carbonate
- comparative results or observations of the named reaction, such as, faster reaction (strong) or greater volume of gas produced in a given time (strong)

Explanations of different results

- weak acids are only partially ionised in aqueous solution
- strong acids are completely ionised in aqueous solution / greater concentration of H^{+}ions
- aqueous solutions of acids at the same concentration / same state of division of metal / powder, same temperature

Q25.

(a) layers
which have weak forces / attractions / bonds between them second mark must be linked to layers
or
which can slide over each other or separate ignore references to rubbing
(b) covalent

Q26.
(a)

(b) Form of carbon Bonding and structure

extra lines from the left negate the mark
(c) evaporate
condense
(d) Engine oil
(e) Refinery gas
(f) because its boiling point is lower

Q27.
(a) 0.34 nm
(b) in composites
(c)
must be comparative
(graphene)
allow converse for graphite
any one from:

- better conductor (of electricity)
- allows greater miniaturisation of electronic circuits
allow thinner
- stronger
- harder
- more flexible
(d) Level 3: Relevant points (reasons / causes) are identified, given in detail and logically linked to form a clear account.

Level 2: Relevant points (reasons / causes) are identified, and there are attempts at logical linking. The resulting account is not fully clear.

Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.

No relevant content

Indicative content

Structure and bonding

- giant structure / lattice
- of carbon atoms
- in layers
- of hexagonal rings
- covalent (bonds)
- strong (covalent) bonds
- where each (carbon) atom bonded to three other (carbon) atoms
- one electron on each atom is delocalised
- delocalised / free electrons

Explanation for conductivity

- delocalised / free electrons
- (which) carry charge through the structure or
- (which) move through the structure

Explanation for graphite being slippery

- layers free to slide over each other
- (because) no covalent bonds between layers or

Q28.

(a) carbon
(b) diamond has a giant structure
each atom is joined to four other atoms
(c) contains layers
no covalent / strong bonds between layers
allow which have weak forces between them
so (the layers) can slide over each other
(d) 3
(e) has delocalised electrons
allow each (carbon) atom has one free electron
which can move through the whole structure
or
which carry the current

